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Quantum Statistical Monte Carlo Methods 
and Applications to Spin Systems 

Masuo Suzuki 1'2 

A short review is given concerning the quantum statistical Monte Carlo method 
based on the equivalence theorem (1) that d-dimensional quantum systems are 
mapped onto (d+  1)-dimensional classical systems. The convergence property of 
this approximate tansformation is discussed in detail. Some applications of this 
geneal appoach to quantum spin systems are reviewed. A new Monte Carlo 
method, "thermo field Monte Carlo method," is presented, which is an exten- 
sion of the projection Monte Carlo method at zero temperature to that at finite 
temperatures. 

KEY WORDS:  Quantum statistical Monte Carlo; equivalence theorem; 
decomposition formulas of exponential operators; thermo field Monte Carlo; 
quantum spin system; thermo field transfer-matrix method. 

1. I N T R O D U C T I O N  

Since Metropolis et al. (2) introduced the classical Monte Carlo method, 
many applications of it to cooperative phenomena have been published/3--s) 
Numerical simulations of quantum systems at zero temperature were star- 
ted in rather early days after quantum mechanics was established; see 
Kalos' paper, this volume, and Ref. 5. However, quantum Monte Carlo at 
finite temperatures had been believed to be quite difficult except for a 
special symmetric system of the isotropic Heisenberg model (7) until the 
present author (8 10) proposed a general approach of "quantum statistical 
Monte Carlo" in which d-dimensional quantum systems are mapped onto 
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(d+ 1)-dimensional classical systems using the following decomposition 
formula of exponential operators (8'H'~2) 

eAt+a2+ ... +Ap= lim (e (t/')A~ e (~/")A2"'" e(1/n)A")" 
n ~ o o  

(1) 

This can be intuitively realized as follows 

eAl + . . .  + Ap = (e(l/,)(A~ + . . .  + Ap))n ~_ ( e ( 1 / , ) A , . . .  e ( / , lAp) ,  (2) 

for large n, as was already discussed by the present author. (13) More 
mathematical arguments (8"11'12) will be given later. Then, the Metropolis 
Monte Carlo method can be applied to the transformed (d+ 1)-dimen- 
sional classical systems. 

The above general approach was first applied to quantum spin systems 
by Suzuki, Miyashita, and Kuroda. (m~ Soon after this method was reported 
by the present author (14) at the International Conference on Frontiers of 
Theoretical Physics to celebrate the 50th anniversary of bose statistics held 
at New Dehli in January, 1977, Barma and Shastry (~5) applied this general 
idea to find equivalent classical models of one-dimensional fermi lattices. In 
1981, Hirsch et al. (16) greatly implemented the above general approach (8 14) 
in one-dimensional fermi lattices and performed explicitly Monte Carlo 
simulations in fermi systems. On the other hand, De Raedt and 
Langendijk (17"~8) studied extensively quantum spin, fermi and bose systems, 
and polaron problems, using the above general transformation method (1). 

Many numerical investigations of the validity and convergence of the 
above general approach based on (1) have been reported by De Raedt- 
De Raedt, (~9) Wiesler, (2~ and Cullen-Landau. (21) Many other interesting 
applications have been reported of the above idea to S = �89 spin systems by 
Satija-Wysin-Bishop, (zz~ Marcu-Mfiller-Schmatzer, (23) and Sakaguchi- 
Kubo-Takada, (24) to higher-spin systems by Takano (25) and Marcu- 
Wiesler, (26) and to fermi gas by Takahashi and Imada ~27) although they 
have devised their own classical representations such as the coherent 
states (25) and path integral (27) representations in applying explicitly the 
above general approach. (8-13) Kolb (28) performed Monte Carlo renor- 
malization group calculations in the two-dimensional quantum transverse 
Ising model by transforming it to the corresponding three-dimensional 
Ising model, as was suggested by the present author. ~ Betsuyaku (29"3~ per- 
formed calculations of the linear quantum spin systems numerically by 
using the quantum transfer-matrix which was implicitly used by the present 
author ~ to obtain the solution of the quantum transverse Ising model on 
the basis of the above equivalence theorem without diagonalizing the 
Hamiltonian. Tsuzuki (31) extended this method to a cluster decomposition. 
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In Section 2, basic ideas of the quantum statistical Monte Carlo will 
be explained in more detail while in Section 3 improved decomposition for- 
mulas of exponential operators and their convergence properties will be 
summarized. Some useful inequalities concerning traces of decomposed 
exponential operators are given in Section 4 and in Section 5, random 
decomposition formulas of exponential operators are given with some 
possible applications to random quantum systems. In Section 6, the 
accuracy of cluster decomposition of exponential operators is discussed, 
and some explicit applications of the general quantum statistical Monte 
Carlo approach will be presented in Section 7. In Section 8, the quantum 
Monte Carlo renormalization approach will be discussed while in Sec- 
tion 9, the thermo field Monte Carlo method (32-3v) will be explained, as 
well as the thermo field transfer-matrix method. (32-36) In Section 10, some 
possible applications of the equivalence theorem to analytic and numerical 
calculations of quantum systems, namely closed solutions of the nth 
approximant (4) and the quantum transfer-matrix method(9,29-31) are 
given. In Section 11, some possibilities of extension of the present general 
method to dynamics are discussed. Summary and discussion will be given 
in Section 12. 

2. BASIC IDEAS OF Q U A N T U M  STATIST ICAL M O N T E  CARLO 

In the present section, we explain a general basic idea of quantum 
Monte Carlo at finite temperatures, namely "quantum statistical Monte 
Carlo Method." It is based on the following equivalence theorem. 

Equivalence Theorem. (9) The partition function of the relevant d- 
dimensional quantum system is transformed into that of the corresponding 
(d+ 1)-dimensional classical system by using the decomposition formula 
(1) of exponential operators 

Z = tr exp(-flYg) = tr (d+ ~ exp :~(d+ ~ (3) 

Here U,~(d+ ~ denotes an effective (d+ 1)-dimensional Hamiltonian defined 
~ e f f  

by 

Z =  tr exp( - /~( ( )  

= t r  exp[-/~(~f~ + ~ +  .-- + ~ p ) ]  

~(~+~+ + - -  - -  , , .  = tr exp n 
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= lim tr exp - exp /3 ""exp 
n ~ o o  n 

= lim ~ " '  ~ <0~1] pll~2>(~2lp2lc~3> 
n --,, oo i~xl > ]c~np> 

"'" <~1 p~P~+~ ><~+ ~1 p, I~+=>"" <%,1 p~ I~ > 

= tr (~+ ~) exp ~a,(a+ ~) ~ e~ (4) 

with pj=exp(-/3~/n), where the states {]~j>} denote arbitrary 
orthogonal complete (or over-complete) sets. 

As shown in Fig. 1, new many-body interactions appear in equivalent 
(d+ 1)-dimensional effective lattices. The additional (d+ 1)th dimension 
plays a role of quantum effect, namely, the noncommutativity of the 
relevant operators. Thus, the additional dimension may be called "quantal 
dimension" (or Trotter's direction). Quantum dynamics in equilibrium can 
be expressed by correlations in this quantal dimension, as will be discussed 
in more detail in Section 11. Therefore, the introduction of the quantal 
dimension in the present formulation is essential in studying the quantum 
effect of the relevant system. 
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= QUANTAL DIMENSION 

Fig. 1. Transformed effective (d+l) -d imensional  lattice with many-body interactions 
denoted by shading. 
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Decomposing the relevant Hamiltonian ~ into p kinds of the sub- 
Hamiltonians is not unique as 

~ = ~ 1 + ~ +  " + ~  (5) 

This nonuniqueness of the decomposition is useful in finding a more precise 
classical representation convenient for practical Monte Carlo simulations. 

The principle of the decomposition (5) is that any matrix element 
(~[ & I~ +1> can be calculated explicitly and that it is "local," namely, of 
finite range, in the effective ( d +  1)-dimensional lattice shown in Fig. 1. The 
above second condition on the decomposition is very important from a 
practical point of view of Monte Carlo simulations. The success of quan- 
tum statistical Monte Carlo proposed in Ref. 9 is that some explicit 
representations which satisfy the above two conditions were found, as 
shown in Figs. 2 and 3 for quantum spin systems with nearest-neighbor 
interactions. In order to find such representations, it is sufficient to 
decompose (9) the original Hamiltonian into sub-Hamiltonians Jgt~, ~ , . . . ,  OVfp 
which are composed of single local operators {~f~(r)} or a sum of "local" 
commutable operators {~jk} as 

= Z ~ k  [~jk, ~(~j,3 = 0 (6) 
k 

Here, by "local," we mean (9) a finite-range cluster interaction. There may 
be two different formulations of decomposition, as was classified by the 
present author(9): 

(i) The first formulation is to decompose into a small finite number 
of sub-Hamiltonians, namely p = finite. For example, the transverse Ising 
model is decomposed conveniently into the following two parts 

~176 ~ =  - J  2 aza} and W2= - F Z  a f (7) 
( i j )  j 

Fig. 2. 

\ 

n l ' ~ ,  

~ Z  

x 

3 

I" 

4 5 M 1' 
(a) (b) 

Two effective lattices (9) (a) and (b) for the linear chain. Each shaded region denotes a 
four-spin interaction. 
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i ,4 [jjb.",',' lu'4,',, > 
~ . . . . .  ~ . . . . . .  
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Fig. 3. Effective three-dimensional lattices (9) (a), (b), and (c). Each shaded region denotes a 
four-spin interaction plus pair interactions. 

where of, of  and a~l are Pauli operators defined by 

(0, ;) 1 af  = and 
a f =  O j  0 j 

Clearly each sub-Hamiltonian is a sum of local commutable operators and 
consequently this satisfies the above two conditions, as was discussed 
explicitly already in one dimension (9). Another example of the first for- 
mulation is to decompose the Heisenberg chain into the following two sub- 
Hamiltonians 

~ = ~e + ort~ (9) 

Jt~ = - J  ~ ~2i" a2j+ 1 and 4 f o = - J ~ 6 2 j  x '%j  (10) 
J j 

This was proposed by the present author (9) as a possible way of decom- 
position, as is shown (9) in Fig. 2(b). This checkerboard decomposition was 
first used explicitly by Barma and Shartry (iS) to find an equivalent classical 
system and was used successfully by Hirsch et al. (16) in fermi systems. 

(ii) The second formulation is to decompose (9) directly into a "local" 
cluster of interactions as 

a f  = ~ a f (r )  ~ ( v )  = local (11) 
r 
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This is sometimes called "real-space decomposition," (RSD). For example, 
the Heisenberg chain is decomposed as 

N 

~ =  ~ ~j. ~r - J~ j . t~ j+ ,  (12) 

More generally it is decomposed into a sum of clusters of interactions as 

N/m 

Z (13) 
j = l  k = l  

The convergence properties of these cluster decompositions will be dis- 
cussed in the succeeding section. 

3. DECOMPOSITION FORMULAS OF EXPONENTIAL 
OPERATORS AND THEIR CONVERGENCE PROPERTIES 

It will be instructive to summarize here some useful decomposition 
formulas 

T h e o r e m  1.(11) For any set of operators {Aj} in a Banach algebra 
(i.e., normed space) 

( ~= ) ( ~=1 )n l (j~>k ( ~= ) exp Aj - e(~/")AJ ~<~n I] [Aj, Ak]l] exp ]JAil] (14) 
j 1 j j 1 

with an arbitrary positive integer p. Therefore, we have (1). 
In particular, for p = 2, we obtain so-called Trotter's formula ~39'4~ 

eA+~= lim (e O/n)A e(1/n~B) ~ (15) 

T h e o r e m  2. (1~) For any operators A and B in a Banach algebra, 

-- (e (1/2n)A e (I/")B e(1/2")A)"[j 4 1 A2(A, B) (16) lie A + B  

n -  

where 

B 1 A2(A, )=~-~ [][[A,B],B]]t+-~rI[[A,B]A]][ 
• exp(]jA[] + t]B][) (17) 

T h e o r e m  3. (12~ For any operators A and B in a Banach algebra, 
the trace f(n) = tr(em"e~/")" is an even function of n. Therefore, the correc- 
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tion of this approximant f(n) to the trace f ( o o ) =  tr exp(A + B) is of the 
order of I/r/2. 

This 1/n z correction law for two operators A and B was pointed out 
by Hirsch et al. O6) and De Raedt et alJ 38) in a simple perturbational expan- 
sion as 

e~(A + B ) =  e(-r/2)A e~ e~/2)A + O(23) (18) 

Now we discuss the decomposition of the general exponential operator 
exp(A~ + A2 + "'" + Ap). We have the following theorem. 

Theorem 4. If we define the following approximant fm({Ai}) 

) t19, 
then we have 

p 1 n 

For example, the approximant defined by 

(A  B~ = e,1/., A . e rl-rnCm (21) 
f m +  1 \ n '  nJ e~ e~ 

satisfies the condition (19), if the coefficients { Cj} are given by (8'42•4) 

C2=�89 C3=�89 A+2B]  (22) 

and in general 

=• -a~ +"'/1 (2s) C, n] [_a2" {e-~'" 'G-~...e-;,2c2 e-;m e ha e~(,~ J;~=o 

The correction of (20) is lower than that of (19) by the order of 1In. 
However, in the case of exp(A +B) we have the 1/n 2 correction law, 
although the operator exp(A/n) exp(B/n) itself has a 1/n a correction. This is 
because 

tr(e (I/")A e(1/ms) n -- tr(e (1/2ma e (I/")B e(1/2n)A) n (24) 

Then, how about a more general case of exp(Aa + A 2 q- "'" -+-Ap) 9. Clearly 
the trace of the product {exp(A t/n)"'exp(Ap/n)}" is not equal to the trace 
of [f~*)({(1/n)Aj})]" for the symmetrized decomposition ~176 

f { " (  {1Aj})=e('/2ma'. . .  e{1/2n)&-l e(l/m& e(/2")&-'.., e{'/2"'At (25) 
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Here, if we impose some restriction to the operators {A j}, then we have the 
evenness law 

T h e o r e m  5. (44) I f fm({Aj} )  satisfies the condition 

fro({ - A  j}) -~ = fm({Aj}) t (26) 

then the approximant })jn 
Zm(n)=-tr f , ,  Aj (27) 

is an even function of n, namely 

Z m ( - n ) = Z m ( n  ) (28) 

This theorem yields the following result 

T h e o r e m  6. (Corollary of Theorem 5): (44) With the conditions (19) 
and (26), we have 

Z2m(r/) = Z . . . .  t + 0 ~-~ (29) 

In particular, if we put 

f2({Aj})  = e & e A 2 ' ' '  e Ap (30) 

for symmetric {A j} (namely, Aj = A j), then we have the following theorem 

T h e o r e m  7. (44) If {Aj} are symmetric operators (i.e., Aj = Aj), then 
we have 

Z2(n ) - tr(e ~ e (l/n)A2''' e( l /n)Ap)  n = Z 2 ( - - n )  (31) 

Consequently we have 

Z2(n) = Z2(oo) + O(1/n 2) (32) 

This was first obtained by Fye (45) for a general integer p in a different 
condition. 

Theorem 7 suggests (44) the following new extrapolation method 

Z2(n) -~ Z2(oo) + a/(n 2 + b) (33) 

Theorem 8 ,  (44) If Q t=  Q with the condition (26), the average of 
any quantum operator Q defined by 

{Q )m(n) =- tr Q[f2m( { (1/n)Aj} ) ]'VZzm(n) (34) 
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is an even function of n, namely 

(Q )m(-n)= (Q )m(n) (35) 

In particular, we have 

( Q ) l ( n )  = (Q)ex,ct + 0(1/n2) (36) 

Theorems 5 and 8 suggest the following extrapolation methods 

1 a 
Z2m(n)(or (Q)m(n))  - n2 m_ 2 n 2 + b + c (37) 

The coefficients a, b, and c are determined by the least-square method from 
Monte Carlo data. 

It is easy to confirm that fro(A, B) in (21) and f~s)({Aj}) in (25) satisfy 
condition (26), when {A j} are symmetric, namely A~ = A j, which is valid in 
ordinary quantum spin systems. 

The above 1In 2 correction law explains well the numerical results by 
Betsuyaku ~29) and by Marcu and Wiesler ~26). 

4. S O M E  USEFUL INEQUALITIES C O N C E R N I N G  TRACES 
OF D E C O M P O S E D  EXPONENTIALS 

It will be worthwhile to study the lower and upper bounds of the 
approximants of the partition function given in the preceding section. 

Golden, ~46) Symanzik, ~47) and Thompson ~48) proved the following 
inequality 

tr eA+~< tr eAe" (38) 

for finite hermitian matrices A and B. 
Here we generalize as follows 

Y h e o r o m  9. If A and B are hermitian matrices, we have 

tr e A + ~ ~< tr(e (l/n)A e(1/n)B)" (39) 

for any nonzero integer n. 

Proof. Note Thompson's lemma 

Lemma 1. (48) If X and Y are finite hermitian matrices, we have 

tr(Xy)2m << tr(X 2 y2)m (40) 

for any positive integer m. 
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Now, we put 

Z~m) = tr [exp (~-~.n) exp 

893 

~n.n} j (41) 

for m = 0, 1, 2,..., and for any nonzero integer n. Then, Thompson's lemma 
(40) yields 

z ~ ) > ~ Z ~ + ~ l > > . . . .  > ~ z ~ ) = z  

Here, the equality that Z~ ~ /=  Z is assured by Theorem 1. 
In particular, we obtain 

(42) 

where 

for m =0. This gives Theorem 9. The case n = 1 in (39) is the Golden- 
Thompson-Symanzik inequality. 

Furthermore, we obtain the following theorem 

then we have 

Theorem 10. If we define the following higher-order approximants 

2~ 21 - tr(e ~i/'~A' e lt/")a2. . . e ll/~ap e~1/~21c2) ~ (44) 

for finite hermitian matrices {A j} with C2 defined by (81 

C2 = ~ ~ ( e -  ~Ap " . . e;.A2 eXA~ eXlA~ + ... +A,I)j;=0 
1 

- 2 { [ A 1 , A ~ + ' "  + A p ] + [ A ~ , A 3 +  + A p ]  

+ "'" + l A p  1 ,  A ; ]  } 

(21 ~< Z~S/ (46) 
2n 

Z}; I - tr(e (1/2nlA1... e (l/2niAp e (1/2nlAp... e(1 /2nlAl )  n (47) 

The proof of Theorem 10 is given with the use of the following 
inequality (48/ 

]tr X2" I ~< tr(XX*)" (48) 

(45) 

Z . - Z ~ ~  (43) 
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for a positive integer n. If we put 

~...~. e(1/2n)Al  C(1/2n)A2 . . . e(1/2n)Ap C(1/4n2)C2 (49) 

then we have tr(XXt)" = Z(, ~) using C~ = - C  2 and we have also ltr x 2 n [  = 

(2) for hermitian matrices {A j}. Thus we obtain Theorem 10. 2n 

In particular, for p = 2 we have 

2(~ 1) - tr(e A/" eB/") ~ >>. Itr(e A/z" e B/2" e(1/4n2)Q)l =- 2(2~ ) (50) 

where C 2-- -�89 B]. It is interesting to note that the numerical results 
by De Raedt et al. (38) satisfy these inequalities, and that Z(s) ,=Z(,  ~) and 

= 2). 

The above result (46) can easily be extended to the following general 
operator X 

X ~ _  e(1/2n)Al  e(1/2n)A2 , , , e(1/2n)Ap e[1/(2n)2]C2 e[1/(2n)3]C3 

�9 " " C [ 1 / (2n  ) m ] C m  

with (s) {Cm} satisfying the relations Ct2m = - C 2 m  and Czt,n+~ 
Details are omitted here�9 

(51) 

C 2 m § 1 4 9  

5. R A N D O M  D E C O M P O S I T I O N  F O R M U L A S  OF 
EXPONENTIAL OPERATORS 

It will be useful to extend the decomposition formulas (1) to the 
following random case 

T h e o r e m  11. If we put E ( j ) =  exp(A/n) ,  we have 

np 

exp(A1 + "'" + Ap) = lim l-I E(ki) (52) 
n ~ o o  i = 1  

where k~ takes one of the values 1, 2 ..... p with equal probability. 
The convergence of (52) can be proved in a way (8'H) similar to that 

o f  (1 ) .  
There are many other extensions similar to (52), which will be 

published elsewhere. 

6. A C C U R A C Y  OF CLUSTER D E C O M P O S I T I O N  OF 
EXPONENTIAL OPERATORS 

As discussed already, (9'3s) how to decompose the Hamiltonian ~ into 
local sub-Hamiltonians {~,~f(r)} is arbitrary. It is intuitively clear that 
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0 - 0 - 0 - - - 0 - 0 - 0 0 - 0 - 0  . . . .  

l m > <  m > 
Fig. 4. Decomposition of the linear chain into m clusters. 

larger-cluster decomposition is better than smaller one, for the same value 
of the Trotter number n in our general equivalence Theorem 4. 

The purpose of the present section is to discuss the accuracy of cluster 
decomposition as a function of the cluster size m. For example, the one- 
dimensional quantum system may be decomposed as in Fig. 4. The two- 
dimensional triangular lattice may be decomposed as in Fig. 5, in which 
three-spin clusters are used as unit cells. Four-spin and seven-spin clusters, 
shown in Fig. 6 may also be used as unit cells. These will be used in explicit 
quantum Monte Carlo simulationsJ 37) 

In order to obtain better approximations based on equivalence 
Theorem 4, i.e., generalized decomposition formula, there are three ways 
shown in Fig. 7, namely (a) to increase the cluster size m for a fixed value 
of the Trotter number n, (b) to increase the value of n for m fixed, and (c) 
to increase both m and n. 

The approximate partition function Zm,n for the cluster size m and the 
Trotter number n is shown ~35) to satisfy 

C(T) 
IZ-Zm,n] <~ (m+ a)(n2 + b ) (53) 

Fig. 5. DecompositionS34 36) of the triangular lattice into triangular cells. 
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Fig. 6. Larger cells: (a) four-spin cluster and (b) seven-spin cluster. 

with some appropriate constants a and b under the condition that {~f~(r)} 
are symmetric, i.e., ~ t ( r ) =  ~ ( r ) .  The coefficient C(T) is a function of tem- 
perature independent of m and n. For  more details of the m-dependence of 
Z . . . .  see the paper by Fye. (4~) 

Fig. 7. 

(a) 

rn 

I (b) 

0 ~, n 
Three approximate methods: (a) to enlarge the cluster size m, to enlarge Trotter's 

number n, and (c) both/TM 
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The above result suggests the following extrapolation formula 

C 
Z ~- (m + a)(n 2 + b) + Zoo (54) 

That is, all the approximants {Zm,~} which satisfy the condition 
(m + a)(n2+ b)=  constant for some appropriate constants a and b give the 
same result with almost the same precision. The least-square method yields 
the values of the parameters a, b, c, and Zoo, which give the desired quan- 
tity of Z. 

7. A P P L I C A T I O N S  TO Q U A N T U M  SPIN S Y S T E M S  

It will be instructive to review first some applications of the general 
quantum statistical Monte Carlo approach to spin systems. 

The first application of it was given (1~ to the following anisotropic 
Heisenberg model 

~ = Y ~ =  - Y ( J x ~ ~  + Jy~r~ + Laf~;)  (55) 
<v) (0-) 

with Pauli matrices cr x, ~rf,  and a~. The "local density matrix" 
P0 = e x p ( - / 3 ~ )  is given by (9'1~ 

1 - X- 3 X 1 -1- X- 2 0 

Pu=((cr~'aglPijlcr'i'~rJ))=~t 0 Xl-I-X2 l - X 3  0 

\ X1 X2 0 0 1 + X3 

(56) 

in the subspace representation lai, a j )  with a j =  _+1, where 

= cosh K x cosh Ky cosh Kz - sinh K x sinh Ky sinh Kz 

tanh Kx - tanh Ky tanh Ks Jx 
Jr1 = 1 - tanh Kx tanh Ky tanh Kz Kx = k~---T'" (57) 

and )(2 and X 3 are cyclic with respect to x, y, and z. 
Monte Carlo simulations were performed (~~ on the basis of the 

classical representation (4). 

7.1. One-D imens iona l  Quantum Spin Systems 

In the one-dimensional case, we used (1~ the equivalent lattice shown 
in Fig. 2(a). The temperature dependence of the perpendicular suscep- 
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 0.4 

0.3 

Katsura o o 

0.2 

0.1 

0 I i I 1 
0 1 2 3 4 5 

kBT/J 

Fig. 8. Temperature dependence of the perpendicular susceptibility for the one-dimensional 
quantum XY model (N = 33, n = 2). cI~ 

tibility of the X Y  chain is shown in Fig. 8 together with Katsura 's  exact 
result (49~ and that obtained (5~ in the first approximant  n = 1. The n = 2  
result is between the n = 1 and exact results in the low temperature region, 
as it should be. 

7.2. Two-Dimensional  X Y  Model 

The two-dimensional classical planar model shows the Kosterl i tz-  
Thouless transition(51); it is also quite interesting to study the two-dimen- 
sional X Y  model tSz) with the help of Monte Carlo simulations. (1~ The unit 
cell of the transformed effective lattice is shown in Fig. 9. The specific heat 
calculated for the n = 1 case is shown in Fig. 10, which seems to show no 
divergence of the specific heat in this precision. More elaborate calculations 
have been reported (53'54) but they are not yet conclusive. It is certain that 
the susceptibility in the X Y  plane diverges at low temperatures, as 
shown (1~ in Fig. 11. 

7.3. Two-Dimensional  Triangular Ant i ferromagnet ic 
Quantum Heisenberg Model-Anderson Problem 

Anderson (55) proposed a new coherent phase in two-dimensional 
frustrated quantum spin systems, namely antiferromagnetic triangular lat- 
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Z-_ 
Unit cell of the effective lattice: effective four-spin interactions are denoted by 
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Fig. 11. Temperature and size dependence of susceptibility in the X Y  plane for the two- 
dimensional X Y  model. II~ 

tices. Hirakawa et al. (56) have found a candidate of such materials, namely 
NaTiO2. 

Thus, it will be quite interesting to perform quantum Monte Carlo 
simulations to study the thermodynamic properties of the triangular 
antiferromagnetic Heisenberg model shown in Fig. 5. The ground state has 
been studied numerically already by Marland and Betts (57) and by Oguchi, 
Nishimori, and Taguchi (58) for finite lattices. Details of the Monte Carlo 
simulations of this system at finite temperatures will be published 
elsewhere. (59) 

8. Q U A N T U M  M O N T E  CARLO R E N O R M A L I Z A T I O N  
G R O U P  A P P R O A C H  

Since Wilson (6~ proposed the renormalization group approach to 
critical phenomena, many investigations on it have been reported. In par- 
ticular, the Monte Carlo renormalization group approach has been applied 
successfully to the three-dimensional Ising model. (61 63) Quite recently 
Kikuchi and Okabe (64) performed Monte Carlo renormalization group 
calculations of the Ising model by devising a powerful algorithm. 
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Kolb (28) first performed the quantum Monte Carlo renormalization 
calculation by using equivalence Theorem4 by Suzuki. (9) That is, our 
starting point is the following decomposition (13) 

((  ) ( 1 ) 7  1 ~ exp - e x p ( - f l ~ )  =,~olim exp - n n Jr2 (58) 

where K=f lJ  and a f = J ( ~  +~2) .  As was discussed by the present 
author (13) and by Kolb, (28) the accuracy of the above decomposition (58) is 
independent of temperature T (or/~ = 1/kB T). This remark is substantial in 
applying the RG method to quantum systems, because the RG transfor- 
mation makes the temperature T move to another one T'. Thus, our 
equivalent lattice has a (d+  1)-dimensional structure as is shown (13) in 
Fig. t2. The temperature dependence comes ~13) only through the thickness 
L (or Kn) in the (d+  1)th quantal direction of the equivalent lattice. 

There are two situations to apply to the above scheme. 

(i) The case that T = 0  is the critical point. This was discussed in 
detail ~13) concerning the one-dimensional transverse Ising model (13"28) and 
the Kondo problem. (~3) In this case, the RG transformation is expressed as 

log Z(K, h) = b -d log Z(bYK, bXh) h = #BH/k~ T (59) 

for the scale factor b, where Z(K, h) denotes the partition function per par- 
ticle, and d is the dimensionality of the system. Here Trotter's number n 

0 

I:1_ 

,,J 

n n n n 

m = K n  

Fig. 12. Temperature dependent effective (d+ 1)-dimensional lattice(13): K =  J/kBT, and n 
denotes Trotter's number. 
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should be fixed for the above Monte Carlo RG. Consequently the suscep- 
tibility, for example, satisfies the following scaling relation (64-66) 

z(K, h) = b 2~ az(bYK, bXh) (60) 

This yields the exponents of x and y. 

(ii) The case To:~0. In this case, we can fix m=Kn in (58), because 
K is very close to the critical point K~. This is reduced to the previous for- 
mulation in classical systems (61 66) 

9. T H E R M O  FIELD M O N T E  CARLO M E T H O D  

9.1. General Formulat ion 

The statistical average of a physical quantity Q at temperature T is 
expressed by the expectation value of the form 

( Q )  = tr Qe-#~e /Z(#) = ( O(#)J Q 10(/~)) 

z( f l )=tr  e ~ (61) 

where W is the Hamiltonian of the relevant quantum system. The thermal 
quantum state IO(fl)) is defined by (67-69) 

[ O ( f l ) )  = Z ( f l )  - 1 / 2  2 e #e,/2 In, ~)  
n 

= Z(fl)-l/2 e (1/2)~ II) 

n 

with an eigenvalue En and 1~) 
dynamical system ~ identical 
jugation rules (67 69) 

(62) 

the corresponding eigenstate in the fictitious 
to the original system together with the con- 

A B = A B  

(clA + c2B)~= c*.d + c*B (63) 

(cl lm ) + c2/n ) ) =c*[rh ) + c~ [~ ) 

Here cl and c 2 are c number and c* denotes the complex conjugate of c. 
Owing to these conjugation rules, the state t I )  is independent of represen- 
tations, namely (3z 36) 

1I) = ~  In, ~)  =Y', I~, 8 )  (64) 
n c~ 
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It is convenient from our point of view to take the number 
representation (33) for fermi and bose systems and the spin 
representation (32-36) for spin systems, because the state 1I) can be esily 
given explicitly in these representations. 

Our starting point is the following path-sum formulation (32-36) of the 
thermal quantum state 

10(/3)) = lim (Zn(~)/Z(O))-m(e-(~/2n~.. .e (~/2n)~P)nIO(0)) (65) 

where I O ( 0 ) > = Z ( 0 )  ~/21I ) , ~ = ~ + ~ 2 + ' ' '  + ~ p ,  and 

Z,(/?) = t r(e-  (b'/2n)~1... e - -  ( / 3 / 2 n ) ) F p ) 2 n  (66) 

Here we have used the generalized Totter formula (1). 
We decompose the Hamiltonian ~ into ~ + ~ + . . -  + ~p so that 

the matrix elements (c~l e x p ( - / ~ ) l ~ ' )  may be obtained explicitly with 
the use of effective local interactions, as was discussed before. 

From a practical point of view, it is more convenient to use the 
following "symmetric" expression of the thermal quantum state 

10(/~)) =Z(~)-~/2exp(-�89 #f" = �89 + ~ )  (67) 

when [#t ~, ~ ]  = 0  as is usually the case. Correspondingly we have the 
following "symmetric" path-sum formulation 

10(/~))= lira [~u)  (68) 
n ~ c l o  

where l Su~) is given by 

I ~ )  = Z~(fl) 1/2(e-(/~/2~ae~ '-- e-(/~/2~)~ ~ 1I) (69) 

9.2. Basic Ideas of the Thermo Field M o n t e  Carlo 

Our basic idea of the thermo field Monte Carlo (32~ is to calculate the 
thermal state I~un) as a diffusion process by extending the Kut i -  
Blanckenbecler-Sugar (KBS) Monte Carlo method at zero 
temperature (7~72) to that of finite temperatures, with important 
sarnpling.(7~ 

First we select the initial thermal state ]I)i randomly, as a subspace 
of 1I). Then, we apply the partial "canonical thermal operator" 
e x p [ - / ~ } / ( 2 n ) ]  successively to the thermal state already obtained, 
namely 

]O(/~j)) oc e x p [ -  �89 ~)~f] [O(//j_~)) (70) 
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Fig. 13. The thermal quantum state ]O(/~j)) is constructed successively from each previous 
higher-temperature thermal quantum state ]O(/~j_ 1)). 

Thus, the thermal states can be calculated successively from each previous 
thermal states at a higher temperature, as shown in Fig. 13. This procedure 
makes a diffusion process in the double Hilbert space ( ~ ,  ~ ) .  That is, the 
thermal state can be obtained as a "sample ensemble" of the form 

IO(fl)) "~ ~ Wp,q(fl)lp, ~t) (71) 
p,q~S 

where the weight Wp,q(~) is given by 

Wp,q(/~)=Y(/3) ~ (g/, Pl (e (a/2n)~. . .e-(a/2,)~;) , lr ,  Y ) 
r e  SO 

(72) 

with some appropriate normalization Y(/~). Here, So denotes the initial 
sample set in which all the states It, ?)  have an equal probability, and S 
denotes a final ensemble produced by the Monte Carlo method. Con- 
sequently, the average of a physical quantity Q is given by 

<Q>eq = (o ( f l )PQlO( f l ) )  

~- ~ (p[Ols) ~ Wptq(fi) Ws, q( f l )J~2( f l )  
p,scS q~S 

(73) 

9.3. Folding M o n t e  Carlo M e t h o d  

The above arguments suggest the following expression {32 36) 

(Q)eq = tr exp( -- �89 Q exp( - l ~ ) / Z ( ~ )  

= ~ (mlQIn) (nle (I/2)B~Is) (sle-(a/2)P~lm)/Z(~) 
rrt,n,s 

where 

(74) 

Z(/3) = ~ l(nl exp(-�89 4(~) lm)l 2 (75) 
m,n 
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This simple reinterpretation of the average ( Q )  is very useful; namely no 
periodic boundary condition in Trotter's direction is necessary (which 
makes MC simulations very efficient), and each element in (75) is always 
positive. 

10. POSSIBLE A P P L I C A T I O N S  OF THE EQUIVALENCE 
T H E O R E M  TO A N A L Y T I C  A N D  N U M E R I C A L  
C A L C U L A T I O N S  OF Q U A N T U M  S Y S T E M S - - C L O S E D -  
F O R M  S O L U T I O N S  OF THE nTH A P P R O X l M A N T  A N D  
Q U A N T U M  T R A N S F E R - M A T R I X  M E T H O D S  

10.1. Closed Solut ions of the n = l  (Pa i r -Product )  
Approx imants  

It will be useful to study analytically even the n = 1 approximant in 
equivalence Theorem 4. 

10.1.1. Closed Solut ion of the n = l  Approx imant  of the 
Anisotropic Heisenberg Chain. As was given by the present 
author, (5~ the partition function Z1 for n = l is given by 

Z1 = 2N(cosh Kx cosh Ky cosh Kz - sinh Kx sinh K v sinh Kz) u (76) 

with Kx, Ky, and Kz defined by (57) for the Hamiltonian (55) in one 
dimension. 

10.1.2. Closed- form Solut ion of the Two-D imens iona l  Spin 
Systems. The first nontrivial closed-form solution of the two-dimen- 
sional X Y  model was given by Lagendijk and De Raedt (73) for the n = 1 
approximant, which shows a phase transition with the logarithmic 
divergence of specific heat at a finite critical temperature. 

The critical line of the anisotropic Heisenberg model was found by 
Onogi et al. (74) for the n = 1 approximant in two dimensions. It is expected 
that closed-form solutions of many other "nth approximants" will be 
obtained in the near future. 

10.2. Quantum Trans fe r -Mat r i x  Methods  

Equivalence Theorem 4 yields the idea to apply the classical transfer- 
matrix methods to quantum systems. This idea was first performed 
analytically by the present author (9) implicitly, and numerically first by 
Betsuyaku. (29'3~ Recently the present author proposed the thermo field 
transfer-matrix method. (32,34 36) One of the merits of this method is that the 
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thermal states can be calculated successively from the high temperature 
limit to the low temperature limit (T=0),  as shown in Fig. 13. Some 
applications of this method will be reported elsewhere. 

11. Q U A N T U M  M O N T E  CARLO M E T H O D  OF D Y N A M I C S  

It is also of great interest to study dynamical problems with the use of 
Monte Carlo simulations. According to Kubo's linear response theory, (75) 
we need the time correlation function of the form 

( A ( t )  A(0)) = Z(/~) -I tr(e ~ e i'~/h A e - i t ~ / h A )  (77) 

in order to calculate transport coefficients. (75) Recently Hirsch et al. (16) and 
Wolynes (76) tried to calculate (77) using the quantum Monte Carlo method 
based on equivalence Theorem 4, by separating the real and imaginary 
parts of the temporal evolution operator exp(it~Vf/h). For more details, see 
Refs. 16 and 76. 

There may be another method to evaluate (77) numerically by 
calculating first the imaginary time correlation function 

C(z)  = ( e  z ~  Ae  ZJe A )  (78) 

for real z and then by a numerical analytic continuation of C(z)  to the real 
time axis. This requires a very long computing time, because a large value 
of Trotter's number n has to be used to calculate explicitly the canonical 
operator exp(zaf') on the basis of equivalence Theorem 4. This will remain 
a future problem. 

12. S U M M A R Y  A N D  D I S C U S S I O N  

In the present paper we have reviewed some basic ideas of the quan- 
tum statistical Monte Carlo method, namely quantum Monte Carlo at 
finite temperatures, based on the equivalence theorem proposed by the 
present author. Some useful techniques for this method, namely "com- 
putationics," are discussed in detail. As a new method, the thermo field 
Monte Carlo method has been explained briefly. A thermo field real-space 
renormalization group approach will be also useful in the near future. 

Many other people (vv 83) have also started to work in this field of 
quantum statistical Monte Carlo. 

In frustrated quantum spin systems and higher-dimensional fermi 
systems, the so-called "negative sign problem" appears, and the accuracy of 
calculations becomes worse for larger systems. Hopefully, this problem will 
be solved in the near future. 



Quantum Statistical Monte  Carlo Methods 907 

AC KNOWLEDG M ENTS 

The present author would like to thank Professor R. Kubo for his con- 
tinual encouragement and fruitful discussions and also to thank late Dr. 
H. Takahasi for suggestive discussions on the numerical analytic con- 
tinuation. Dr. S. Miyashita, Dr. M. Imada, R. Fye, T. Onogi, M. Inoue, 
M. Takasu, M. Katori, Y. Liu, T. Chikyu, and X. Hu are acknowledged for 
their stimulating discussions and useful comments. 

This work is partially financed by the Scientific Research Fund of the 
Ministry of Education, and by the Taniguchi Foundation. 

REFERENCES 

1. M. Suzuki, Prog. Theor. Phys. 56:1454 (1976). 
2. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. 

Phys. 21:1087 (1953). 
3. K. Binder, ed. Monte Carlo Method in Statistical Physics (Springer, Berlin, 1979), and 

Application of  the Monte Carlo Method in Statistical Physics (Springer, Berlin, 1984). 
4. O. G. Mouritsen, Computer Studies p f  Phase Transitions and Critical Phenomena 

(Springer, Berlin. 1984). 
5. L. D. Fosdick, J. Math. Phys. 3:1251 (1962). 
6. M. H. Kalos, Monte Carlo Methods in Quantum Problems (Reidel, Boston, 1982). 
7. D. C. Handscomb, Proc. Cambridge Philos. Soc. 58:594 (1962); 60:115 (1964); 

S. Chakravarty and D. B. Stein, Phys. Rev. Lett. 49:582 (1982); J. W. Lyklema, Phys. Rev. 
Lett. 49:88 (1982) and Phys. Rev. B 27:3108 (1983); D. H. Lee, J. D. Joannopoulos, and 
J. W. Negele, Phys. Rev. B 30:1599 (1984). 

8. M. Suzuki, Commun. Math. Phys. 51:183 (1976); 57:193 (1977). 
9. M. Suzuki, Prog. Theor. Phys. 56:1454 (1976). 

10. M. Suzuki, S. Miyashita, and A. Kuroda, Prog. Theor. Phys. 58:1377 (1977). 
11. M. Suzuki, J. Math. Phys. 26:601 (1985). 
12. M. Suzuki, Phys. Rev. B 31:2957 (1985). 
13. M. Suzuki, Prog. Theor. Phys. 58:755 (1977), Eq. (4.8). 
14. M. Suzuki, in F. C. Auluck, L. S. Kothari, and V. S. Nanda, eds. Proceedings of Inter- 

national Conference on Frontiers of Theoretical Physics, held at New Dehli, January 
6-12, 1977. 

15. M. Barma and B. S. Shastry, Phys. Lett. A 61:15 (1977); Phys. Rev. B 18:3351 (1978). 
16. J. E. Hirsch, D. J. Scalapino, R. L. Sugar, and R. Blankenbecler, Phys. Rev. Lett. 47:1628 

(1981) and Phys. Rev. B 26:5033 (1982); J. E. Hirsch and D. J. Scalapino, Phys. Rev. B 
27::7169 (1983). See also reviews by D.J. Scalapino and J.E. Hirsch, in the present 
volume. 

17. H. De Raedt and A. Lagendijk, Phys. Rev. Lett. 46:77 (1981), J. Stat. Phys. 27:731 (1982), 
Phys. Rev. Lett. 49:1552 (1982), and Phys. Rev. B 24:463 (1981); H. De Raedt, B. De 
Raedt, and A. Lagendijk, Z. Phys. B 57:209 (1984). 

18. H. De Raedt and A. Lagendijk, Phys. Rep. 127:233 (1985). 
19. H. De Raedt and B. De Raedt, Phys. Rev. B 10:5325 (1984). 
20. A. Wiesler, Phys. Left. A 89:359 (1982). 
21. J. J. Cullen and D. P. Landau, Phys. Rev. B 27:297 (1983). 
22. I. Satija, G. Wysin, and A. R. Bishop, Phys. Rev. B 31:3205 (1985). 



908 Suzuki 

23. M. Marcu, J. Mfiller, and F. K. Schmatzer, J. Phys. A: Math. Gen. 18:3189 (1985). 
24. T. Sakaguchi, K. Kubo, and S. Takada, 3". Phys. Soc. Japan 54:861 (1985). 
25. H. Takano, Prog. Theor. Phys. 73:332 (1985). 
26. M. Marcu and A. Wiesler, J. Phys. A. Math. Gen. 18:2479 (1985). 
27. M. Takahashi and M. Imada, J. Phys. Soc. Japan 53:963 and 3765 (1984). 
28. M. Kolb, Phys. Rev. Lett. 51:1696 (1983). 
29. H. Betsuyaku, Phys. Rev. Lett. 53:629 (1984); Prog. Theor. Phys. 73:319 (1985). 
30. H. Betsuyaku and T. Yokota, Prog. Theor. Phys. 75:808 (1986). 
31. T. Tsuzuki, Prog. Theor. Phys. 72:956 (1984). 
32. M. Suzuki, Phys. Lett. A 111:440 (1985). 
33. M. Suzuki, J. Phys. Soc. Japan 54: No. 12 (1985). 
34. M. Suzuki, J. Stat. Phys. 42:1047 (1986). 
35. M. Suzuki, Progress in Quantum Field Theory, H. Ezawa and S. Kamefuchi, eds. (North- 

Holland, Amsterdam, 1986). 
36. M. Suzuki, Proceedings og the International Symposium on Quantum Field Theory, 

F. Mancini, ed., held at Positano, Salerno, Italy, June 5-7, 1985. 
37. M. Suzuki, S. Miyashita, and M. Takasu, Prog. Theor. Phys. (to be submitted). 
38. H. De Raedt and B. De Raedt, Phys. Rev. A 28:3575 (1983). 
39. H. F. Trotter, Proc. Am. Math. Soc. 10:545 (1959); S. T. Butler and H. H. Friedman, Phys. 

Rev. 98:287 (1955). 
40. S. Golden, Phys. Rev. 107:1283 (1957). 
41. W. Magnus, Commun. Pure Appl. Math. 7:649 (1954). 
42. R. M. Wilcox, J. Math. Phys. 8:962 (1967). 
43. W. Witschel, J. Phys. A. Math. Gen. 8:143 (1975), Phys. Left. A 111:383 (1985); B. Mielnik 

and J. Plesanski, Ann. Inst. Henri Poincar~ 12:215 (1970). 
44. M. Suzuki, Phys. Lett. 113A:299 (1985). 
45. R. Fye, Phys. Rev. B. 
46. S. Golden, Phys. Rev. B 137:1127 (1965). 
47. K. Symanzik, Z Math. Phys. 6:1155 (1965). 
48. C. J. Thompson, J. Math. Phys. 6:1812 (1965). 
49. S. Katsura, Phys. Rev. 127:1508 (1962); E. Lieb, T. Schultz, and D. Mattis, Ann. of Phys. 

16:407 (1961). 
50. M. Suzuki, J. Phys. Soc. Japan 21:2274 (1966). 
51. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181 (1973); J. M. Kosterlitz, J. Phys. C 

7:1046 (1974); S. Miyashita, H. Nishimori, A. Kuroda, and M. Suzuki, Prog. Theor. Phys. 
60:1669 (1978); S. Miyashita, Prog. Theor. Phys. 63:797 (1980) and 65:1595 (1981). 

52. D. D. Betts and S. B. Kelland, J. Phys. Soc. Japan 52:11 (1983), suppl, and references cited 
therein. 

53. H. De Raedt, B. De Raedt, J. Fivez, and A. Lagendijk, Phys. Lett. A 104:430 (1984). 
54. J. E. Hirsch, in this volume, and references cited therein. 
55. P. W. Anderson, Mat. Res. Bull. 8:153 (1973); P. Fazekas and P. W. Anderson, Phil. Mag. 

30:423 (1974). 
56. K. Hirakawa, H. Kadowaki, and K. Ubukoshi, J. Phys. Soc. Japan 54:3526 (1985); 

I. Yamada, K. Ubukoshi, and K. Hirakawa, J. Phys. Soc. Japan 54:3571 (1985). 
57. L. G. Marland and D. D. Betts, Phys. Rev. Left. 43:1618 (1979). 
58. T. Oguchi, H. Nishimori, and Y. Taguchi, J. Phys. Soc. Japan 55:323 (1986). 
59. M. Takasu, S. Miyashita, and M. Suzuki, Prog. Theor. Phys. 75: No. 5 (1986). 
60. K. G. Wilson, Phys. Rev. B 4:3174, 3184 (1971). 
61. S.-k. Ma, Phys. Rev. Lett. 37:461 (1976). 
62. R. H. Swendsen, Phys. Rev. Lett. 42:859 (1979). 



Quantum Statistical Monte  Carlo Methods 909 

63. G. S. Pawley, R. H. Swendsen, D. J. Wallace, and K. G. Wilson, Phys. Rev. B 29:4030 
(1984). 

64. M. Kikuchi and Y. Okabe, Prog. Theor. Phys. 75:192 (1986). 
65. K. Binder, Z. Phys. B 43:119 (1981). 
66. M. N. Barber and W. Selke, J. Phys. A 15:L617 (1982). 
67. L. Leplae, F. Mancini, and H. Umezawa, Phys. Rep. C 10:151 (1974). 
68. Y. Takahashi and H. Umezawa, Collect. Phenom. 2:55 (1975). 
69. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed 

States (North-Holland, Amsterdam, New York, London, 1982). 
70. J. Kuti, Phys. Rev. Lett. 49:183 (1982). 
71. R. Blankenbecler and R. L. Sugar, Phys. Rev. D 27:1304 (1983). 
72. R. L. Sugar, in this volume. 
73. A. Lagendijk and H. De Raedt, Phys. Rev. Lett. 49:602 (1982). 
74. T. Onogi, S. Miyashita, and M. Suzuki, Prog. Theor. Phys. 73:833 (1985), and J. Stat. 

Phys. (submitted). 
75. R. Kubo, J. Phys. Soc. Japan 12:570 (1957). 
76. P. G. Wolynes, Monte Carlo Methods in Quantum Problems (Reidel, Boston, 1982), and 

references cited therein. 
77. S. Homma, H. Matsuda, and N. Ogita, Prog. Theor. Phys. 72:1245 (1984) and preprint. 
78. O. Nagai et al., J. Mag. Mag. Mat. 54-57:687 (1986). 
79. H. Ishii and T. Yamamoto, J. Phys. C 18:6225 (1985). 
80. N. Nagaosa and J. Takimoto, J. Phys. Soe. Japan (submitted). 
81. E. Loh, Jr., D. J. Scalapino, and P. M. Grant, Phys. Rev. 31B:4712 (1985). 
82. E. Loh, Jr., Phys. Rev. Lett. 55:2371 (1985). 
83. I. Morgenstern and D. Wfirtz, Z. Phys. B-Condensed Matter 61:219 (1985). 


